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Abstract

Applied cost-effectiveness analysis models are an important tool for assessing health and economic effects of healthcare
interventions but are not best suited for illustrating methods. Our objective is to provide a simple, open-source model for
the simulation of disease-screening cost-effectiveness for teaching and research purposes. We introduce our model and
provide an initial application to examine changes to the efficiency frontier as input parameters vary and to demonstrate face
validity. We described a vectorised, discrete-event simulation of screening in R with an Excel interface to define parameters
and inspect principal results. An R Shiny app permits dynamic interpretation of simulation outputs. An example with 8161
screening strategies illustrates the cost and effectiveness of varying the disease sojourn time, treatment effectiveness, and
test performance characteristics and costs on screening policies. Many of our findings are intuitive and straightforward, such
as a reduction in screening costs leading to decreased overall costs and improved cost-effectiveness. Others are less obvi-
ous and depend on whether we consider gross outcomes or those net to no screening. For instance, enhanced treatment of
symptomatic disease increases gross effectiveness, but reduces the net effectiveness and cost-effectiveness of screening. A
lengthening of the preclinical sojourn time has ambiguous effects relative to no screening, as cost-effectiveness improves for
some strategies but deteriorates for others. Our simple model offers an accessible platform for methods research and teach-
ing. We hope it will serve as a public good and promote an intuitive understanding of the cost-effectiveness of screening.

1 Introduction

Key Points for Decision Makers

Cost-effectiveness analysis (CEA) is the standard method

We provide a simplified screening cost-effectiveness anal- for assessing value for money in healthcare [1, 2]. Models
ysis microsimulation for teaching and research purposes. have been applied extensively to examine the cost-effec-
As an initial application, we present an assessment of tiveness of cancer-screening policies [3-5]. Such models
8161 screening strategies and conduct comparative permit appraisal of a broader range of strategies than is
statics to illustrate the influence of parameters on cost- feasible to assess in trials [6]. Similarly, simulations can
effectiveness. offer decision makers estimates of the long-term effects

of screening earlier than can be achieved within trials [3].

Despite the widespread application of CEA models
there are recognised methodological shortcomings in
applied modelling studies [7, 8]. These include the issues
of the failure to conduct incremental analyses and the
omission of relevant strategies [8]. Such issues are evident

Our analysis conveys the intuition of the relationship
between parameter values and outcomes, including both
absolute costs and effects and those relative to no screen-
ing, informing the process of model validation.

D4 Yi-Shu Lin in the cancer-screening CEA literature in particular [9,
yilin@ted.ie 10]. Other screening-specific issues include risk stratifica-
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proposal rather than addressing methods concerns or pub-
lishing accessible teaching examples. Second, many CEA
models are not openly shared by the academic groups that
hold them, which inhibits their application by others to
examine methods questions and perpetuates “blackbox”
opacity concerns. While a few open-source models are
available, these are often applied analyses and come with
attendant complexity [14, 15]. As such, these models do
not offer useful starting points for novice modellers to
begin learning the fundamentals of simulation and can
require long run times, especially when simulating many
strategies. Overall, the limited availability of simple, fast,
openly shared models means the screening literature lacks
an accessible simulation platform for teaching and meth-
ods research.

An important aspect of model development is model
validation. This helps avoid errors and ensures the model
is fit for purpose [16]. One aspect of validation is estab-
lishing face validity, which relies on subjective expert
judgement regarding the research question [17]. This is
used to assess if a model’s outputs are consistent with
expectations. Modellers therefore need to be equipped
with an understanding of what results appear plausible to
identify and avoid errors [16]. Some of the early screening
modelling literature used analytical models that employed
relatively high levels of abstraction [18-20]. Such sim-
plified models are useful for generating an intuitive
understanding of screening, yet these models can be alge-
braically challenging to solve and become impractically
complex once high degrees of abstraction are relaxed. The
availability of programmable computers and simulation
software means analytical approaches have generally been
superseded by simulation. While simulation is suitable for
applied optimisation problems, the loss of abstraction can
compromise their usefulness in illustrating relationships
between parameters and outcomes.

If researchers lack an intuitive understanding of screening
cost-effectiveness and how it varies between strategies and
across parameter values, they may be ill-equipped to assess
elementary face validity. This in turn may compromise pros-
pects for quality improvement in CEA modelling. Previous
work in the specific context of CEAs of colorectal cancer
screening found that although most authors report having
conducted face validation exercises, few studies actually
present evidence of the validation [21]. The applied nature
of these CEA models does not lend itself to demonstration
of face validation in abstract terms, including the explana-
tion for the relationships between the model inputs and their
corresponding cost-effectiveness estimates.

Several tutorials on state-transition modelling have been
published [22-25], although none are presented in the
context of screening interventions. Notable recent exam-
ples are the tutorials published by the Decision Analysis
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in R for Technologies in Health (DARTH) group [22-24].
Most tutorials published to date address discrete-time state-
transition models, and we are only aware of one tutorial on
discrete-event simulation (DES) [26]. To date, there is no
open-source teaching model designed for CEA screening
interventions, irrespective of model type.

We believe the lack of an accessible, readily sharable
model represents a meaningful research gap in the screening
CEA literature. The objective of this study is to introduce an
open-source modelling platform for the simulation of cost-
effectiveness of disease screening for teaching and research
purposes. This simplified model employs DES and is coded
in the R programming language. It is deliberately coded
largely in base R in order to enhance accessibility and reduce
dependence on installed packages. It also employs Microsoft
Excel spreadsheets to aid easy definition of parameter values
and convenient inspection of results for those less familiar
with R. The model is specifically intended to be capable of
simulating a large range of screening strategies in order to
illustrate the importance of including sufficient screening
alternatives among other methods considerations. DES is
chosen as it offers an intuitive and highly efficient modelling
paradigm within which to simulate screening interventions.

As an initial application of our model, we demonstrate
the relationship between parameters and outcomes in order
to support the development of intuitive understanding of
screening cost-effectiveness. Our analysis aims to illustrate
the effects of disease incidence rates, preclinical durations
and test performance characteristics on the costs and effects
of screening. In particular, we demonstrate how the posi-
tion of the cost-effective efficiency frontier varies as these
parameters change, and the implication for optimal screen-
ing policies. We hope that our model will serve as a training
tool for those working with screening models and that this
will enhance understanding of CEA simulation, which in
turn will lead to better evidence, more effective policies and,
ultimately, improved health outcomes.

2 A Pedagogical Model

This simplified microsimulation model is coded in R (ver-
sion 4.2.1) and comprises approximately 730 lines including
markup. The complete model code and its specification are
available for all to access freely on GitHub (https://github.
com/yishu-lin/Pedagogical-CEA-Model-of-Screening.git).

2.1 Model Overview

We first provide a broad outline of the modelling approach
before giving a detailed description of selected key elements of
the model. The intention is not to give a complete walk through
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of the model code within the article. The interested reader can
consult the fully marked-up model code on GitHub for a com-
plete description. Rather, we wish to provide an overview of
the modelling approach before describing an application used
to demonstrate how the efficiency frontier changes as key input
parameters change. This model was designed for illustrative
purposes and does not represent any specific disease or inter-
vention, though it is broadly conceived in the context of cancer,
in which there is a non-communicable preclinical disease that
can be screened for at multiple points over an individual’s life-
time. Our model is deliberately more abstract than the applied
models typically used in applied CEAs.

We use a single-lesion model, meaning that individuals
can only develop one instance of disease per lifetime. The
disease can be treated, either upon clinical presentation or
screen detection. Treatment is not assumed to be perfectly
effective as not all patients survive, but those who sur-
vive are assumed to have no long-term morbidity. We also
assumed no disease recurrence.

This individual-level DES depicts a natural history of dis-
ease for a single lesion with five health states (Fig. 1). All
individuals start in the perfect health state but are at risk of
disease. In the absence of disease, individuals die of other
causes, the timing of which is determined by assumed life
tables. Individuals in the preclinical state have disease but
have not been diagnosed and suffer no symptoms. Their dis-
ease is detectable by screening. Individuals can be diagnosed
after either symptomatic presentation or screen detection,
at which point they enter a clinical state and start treatment.
We assume treatment has a higher probability of success if
disease is detected in the preclinical state. If individuals are
cured, there is no further treatment and survivors are excluded
from future screening activity. In the case of treatment failure,
individuals die at the same point in time as if no treatment
occurred, i.e. there is no longevity benefit. In the case of treat-
ment success, death occurs at the time of other-cause death as

determined by the assumed life tables. The model simulates
all health outcomes for each individual until death.

2.2 Model Structure
2.2.1 Simulation of Natural History

First, the model simulates the natural history of each indi-
vidual. The age at entering the preclinical state and age at
other-cause death are independently drawn from the prob-
ability distributions of disease incidence and life tables.
Both distributions are defined by the incidence probabil-
ity and the survival rate for the user-defined age groups.
The sojourn time of the preclinical and clinical stages are
assigned from user-defined distributions. Users can choose
from uniform, exponential or Weibull distributions. An
individual’s age exiting a given health state is determined
by their age at entry plus the sampled sojourn time in that
state. An individual’s all-cause death age is the minimum
of the cause-specific and other-cause death ages.

The model employs a vectorised approach, meaning
that large vectors are used to record the age of entry and
exit of specific states corresponding with each element
in the vector corresponding to simulated individuals, and
the model operations are, wherever possible, applied over
these vectors. The vectorised approach aids the efficiency
of the model and minimises the iterative use of loops.

2.2.1.1 Pseudo-code A fundamental outcome table in the
model is one which records the unique identification of
each simulated individual and the age of entry into the
three possible disease states, which are preclinical dis-
ease, clinical disease and cause-specific death (Box 1).
This array also records the other-cause death age and
the overall all-cause death age. This array therefore has
dimensions n X 6, where n is the number of simulated

Cause-Specific Death

Multiple Screening
Rounds

Treatment (Stage 4)

Disease Free Preclinical Disease

Clinical Disease Other-Cause Death

(Stage 1) (Stage 2)

(Stage 3) (Stage 5)

Fig.1 Model diagram. The white health states represent the natural
history of disease. The two interventions, screening and treatment,
are labelled in green. The screening intervention can only be imple-

mented before the individual enters clinical health state (stage 3), and
treatment can be received when patients are diagnosed from screen-
ing (stage 2) or clinically presented (stage 3)
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# Define number of health stages with the stage arrival

# This model only features five states:
(4) Cause-Specific Death;,
Outcomes <- array (NA, dim = c(SampleSize, 6))

Disease,; (3)Clinical Disease;

length of the sample size

colnames (Outcomes) <- c/('"PersonNumber",
paste (DefineStages[2:nrow (DefineStages),

column names
Outcomes/|[,

"PersonNumber"] <- c(l:SampleSize)

(1)Disease Free,; (2)Preclinical
(5)0ther-Cause Death
# Create an array of the

"Name"]), "AllCauseDeath") # Set

# Set the first column to be

the unique person-number for each individual

*DefineStages is a data frame recording the parameters in the spreadsheet Stages, relevant to

disease history.

Box 1 Pseudo-code creating an outcome table

# The intervening columns correspond to the arrival of the

intermediate disease states

# This model studies the cohort with the same age,

so here does not

need to simulate the first health state (healthy)
# Define the generic onset function which applies an age-specific
probability of entering a specific stage

OnsetFunction <- function (x) {

unlist (approx (probability, age, x,

ties = max) [2], use.names = F)

# Ties = max 1s required because of the possibility of multiple zero
probabilities of disease at younger ages

}

Box 2 Pseudo-code defining an onset function for disease incidence and other-cause deaths

individuals. There is no explicit recording of membership
of the healthy state as all individuals inhabit this state
from birth until either the onset of preclinical disease or
other-cause death.

To simulate the age of entry into the preclinical disease
state, the model uses an onset function that samples the
age of entering a specific health state for each individual
from an age-specific probability (Box 2). This employs
linear interpolation from a piecewise linear function of
the cumulative probability of disease onset with age. The
same approach is applied to simulate the age of entering
the preclinical state and age at other-cause death.

The onset function is then applied over a vector x, gener-
ated using a random value between O and 1, with a length
equal to the simulated population size. Readers seeking
detail on how the probability and age arguments are defined
should refer to the complete model code.

Regarding other health states, the age of entering the state
is the age of entering the previous state plus the sojourn time
of this previous state. This is achieved by applying a loop
over the number of stages minus one, to exclude the final
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stage of other-cause death (Box 3). Inside the loop, we create
random numbers to draw from the corresponding sojourn
time distributions. Exponential and Weibull distributions can
be chosen to sample the sojourn time of each health state,
as can a constant duration. Naturally, a constant duration
does not require random sampling because it assumes every
individual has a fixed duration. Any health states entered
after age 100 are then censored as the model assumes all
simulated individuals die by age 100.

The age of all-cause death is determined as the minimum
of an individual’s cause-specific death and other-cause death
(Box 4).

2.2.2 Adjustment of Screening Strategies

The model includes a primary screening test, the sen-
sitivity and specificity of which can be adjusted, as can
the interval between screens and the start and stop ages.
The model assumes a disutility from primary screening to
account for the quality-of-life (QoL) loss due to the time
and effort associated with undergoing a screening test. The
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# The model needs a loop here to go through the disease stages
for (Stage in 1: (nrow(DefineStages) - 1)) {
# Apply the sojourn time to the stages

# Retrieve the distribution type, scale and shape

DurationType <- Input[paste("StageType", Stage, sep = ""),
CurrentRun]
DurationScale <- Input[paste('"StageScale", Stage, sep = ""),
CurrentRun]
DurationShape <- Input[paste("StageShape", Stage, sep = ""),
CurrentRun]
if (! (is.na(DurationType))) {
if (DurationType == 1) {Duration <- rep (DurationScale,
SampleSize)} # Set the preclinical distribution to be constant
if (DurationType == 2){Duration <- -(log(l - runif (SampleSize)))

* DurationScale}
exponentially distributed

if (DurationType == 3){Duration <-
~ (1 / DurationShape)) * DurationScale}
distribution to be Weibull distribution,
rweibull (SampleSize, shape = DurationShape, scale = DurationScale)

Outcomes|[, Stage + 1] <- Outcomes[, Stage] + Duration # Find the
end of the preclinical period by adding the onset to the duration

}

# Set the preclinical distribution to be
((-log(l - runif (SampleSize)))

# Set the preclinical
and the alternative code:

# This study assumes all the people died before aged 100
Outcomes [which (Outcomes ([, Stage + 1] > 100), Stage + 1] <- 100

Box 3 Pseudo-code presenting a loop for sampling the sojourn time of health states

# Find the all-cause death
Outcomes/|[,
OQutcomes [, "OtherCauseDeath"],

Box4 Pseudo-code adjusting the age of all-cause deaths

model permits the simulation of alternative sets of test
performance assumptions, corresponding to alternative
primary screen modalities. Which modalities are applied
and the screening interval can be varied over the course of
an individual’s screening programme (Fig. 2). The model
does not explicitly simulate a triage test, but does assume
all the positives receive triage and only true positives
access early treatment. All those false positives from the
initial screening test therefore do not receive an interven-
tion and remain eligible for future screening rounds.

The screening schedules are generated from the target age
ranges and intervals. In many cases, the schedules are generated
as approximations as a given screening age range may not be
perfectly divisible by a given screening interval. For example,

"AllCauseDeath"] <- pmin (Outcomes/,
na.rm

"CauseSpecificDeath"],
= TRUE)

triennial screening with a start age of 40 and stop age of 60 is
approximated by eight screens between the ages of 40 and 61.
This approximation is achieved by holding the starting age and
interval fixed but choosing the stop age that gives the closest
approximation to the target stop age. Where two alternative stop
ages can approximate a given target stop age, we specify the
higher of the two. For example, if a screening stop age that the
user defined is 70, while both 68 and 72 could approximate 70,
our model applies 72.

2.2.2.1 Pseudo-code The model can generate screening
schedules in which the screening interval length varies, such
as is often employed in cervical screening. For the sake of
clarity, the application here uses a constant screening inter-
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StartAge IntervalSwitchAgel

| |

IntervalSwitchAge2

IntervalSwitchAge3

StopAge

I |

Intervall Interval2

| Time

Interval3 Interval4

TestApplied1

TestSwitchAge

Fig.2 Screen schedule. The terms used in the figure correspond to
the parameter names used in the model code. StartAge is the age
of starting the screening programme, and StopAge is the end of the
screening. IntervalSwitchAge is the age that changes screening inter-

NumberOfScreens <-
number of screens

NumberOfScreens <- ifelse (NumberOfScreens %% 1 ==
ceiling (NumberOfScreens), round (NumberOfScreens))

number of screens

(StopAge - StartAge) / Interval + 1

-

TestApplied2

vals, which can be changed up to three times. TestSwitchAge is the
age that changes screening modality from TestApplied] to TestAp-
plied2

# Find the

0.5,
# Rounding the

StopAge <- StartAge + (NumberOfScreens - 1) * Interval # Redefine
the actual StopAge following rounding

Screens <- c(seq(StartAge,

Box5 Pseudo-code generating screening schedules

val, and this is what is presented in the code and pseudo-code
(Box 5). A given screening schedule is defined on the basis
of the length of the screening interval, the screening start age
and the target screening stop age. The total number of screens
per schedule is derived from the target age range and the
screening interval. In cases in which the age range is not per-
fectly divisible by the interval and the remainder is 0.5 and
above, we round up to generate the applied number of screens
as an integer. This number of screens is then used to deter-
mine the actual stop age and, in turn, the schedule of screens.

2.2.3 Simulation of Screening Strategies

We make several assumptions to both ensure reproducible
results across model iterations and reduce stochastic (first-
order) uncertainty. Each simulation starts with a random num-
ber seed. The use of common seeds permits holding the natural
history of each individual constant across simulations. Other
sample seeds are used to ensure a fair comparison among the
screening strategies. For instance, we assumed the same ran-
dom seeds for individuals for common age-specific screening
moments in different simulations. This assumes the probability
of detecting a true positive at a given screening moment will be
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StopAge,

Interval))

the same across separate simulations featuring the same screen-
ing moment. Similarly, we also assumed the same random num-
bers when simulating treatment success from screen-detected
and symptomatically presenting disease. This is to ensure any
given individual has better outcomes from screen-detected dis-
ease and treatment outcomes are comparable across strategies.
The same random seeds are used for the probability of cure for
symptomatic presentation across iterations.

2.2.3.1 Pseudo-code The simulation of screening employs
a loop to iterate through each round of screening (Box 6). In
order to eliminate stochastic error, the sample seed can be
reset within each loop to permit the analysis to maintain a con-
stant probability of disease detection within each screening
moment at a given age over alternative screening schedules.
For instance, this can ensure that if disease would be detected
within an annual screening programme for an individual aged
30, then we can ensure disease would also be detected for an
identical screen also applied at age 30 within a 5-yearly inter-
val. To achieve this, the set.seed function refers to tables of ran-
dom numbers related to specific ages at which screening could
be applied. The analysis draws on the same random numbers
for every screen at that given age. This process is used to gener-
ate random numbers for both test sensitivity and test specificity.
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The analysis identifies individuals eligible for screening
depending on whether they are both alive and not yet diag-
nosed with disease. While the earlier descriptions mentioned
Outcomes as the fundamental output array corresponding to
the disease natural history, the array ScreenedOutcomes is
used here to record those outcomes once we account for how
the natural history of disease is modified by screening and
treatment for both clinically detected and screen-detected dis-
ease. The model identifies those still alive and those not yet
diagnosed and finds the intersection of the two to determine
all those eligible for screening at the given screening round.

The model then identifies those individuals who are in
the preclinical state at the time of screening. It then identi-
fies all those who are in the preclinical phase and eligible
for screening at the given screening round and the comple-
mentary set of screen-eligible intervals who are negative
at that screening moment. The model uses the vectors of
all positive and negative cases and combines them with the
sensitivity and specificity of the applied screening modal-
ity to generate the true and false positives.

The true positive cases detected through screening have their
probability of successful treatment applied to determine who is
cured of disease following treatment. Again, the model uses a
seed that is held constant over individuals, using the CureSeed in
this instance. A benefit of a consistent random seed is the avoid-
ance of the circumstance where an individual is cured when dis-
ease was detected at the clinical stage within one strategy, while
treatment was unsuccessful despite the disease being detected
at an earlier preclinical phase in another strategy, even though
the probability of treatment success is assumed to be higher in
preclinical rather than clinical disease.

2.2.4 Cost and Effects Estimates

We considered four types of costs: primary screen, triage,
early treatment and late treatment. The primary screen cost
is calculated based on the total number of screens con-
ducted regardless of their outcomes. We apply the cost of
triage testing to all those primary test positives (including
false positives). Early treatment is received by true-positive
patients identified by screening. Conversely, late treatment
is received by those individuals presenting symptomatically.
The treatment costs occur when individuals undergo treat-
ment, which is assumed to occur at a single point in time
per patient.

The model includes QoL adjustment to the effectiveness.
Both screening and triage incur QoL losses. QoL losses are
also applied to treatment for screen-detected and sympto-
matic disease on a one-off basis. We assumed no QoL decre-
ment for being in the preclinical state, including after screen
detection, though we assumed a disutility for the clinical
state and we assumed this also applies to screen-detected
individuals once their disease progressed to the point that

it would have presented symptomatically in the absence of
screening. We discounted the costs and effects on a discrete
annual basis using a user-defined discount rate and discount
year.

2.2.5 The Cost-Effectiveness Outcomes

We record the principal cost-effectiveness outcomes, includ-
ing the discounted and undiscounted costs, life-years (LYs)
gained, quality-adjusted life-years (QALYs) gained, and the
set of strategies on the efficiency frontier and the incremen-
tal cost-effectiveness ratios (ICERs) between them. We also
record intermediate outcomes, including the age entering
health states, a disaggregation of costs, and the number of
screens, individuals entering the preclinical state in their
disease history, true positives, false positives, cancer deaths
and clinical cases. The intermediate outcomes also include
the over-diagnosed cases, i.e. individuals that were screen
detected but in the absence of screening would not have pre-
sented symptomatically before death.

2.3 User Interface

To make the framework accessible for those unfamiliar with
R, all the parameters can be defined in Excel. An Excel tem-
plate is prepared for saving parameter inputs and reading
main outcomes. The inputs defined in Excel are saved in
separate files, which R then imports. R is the main program
to execute the model. Similarly, the main model outputs
can be accessed by Excel or R, including cost-effectiveness
tables with ICERs and cost-effectiveness planes. The addi-
tional results are saved in separate output files, which can
be read by R.

An R Shiny app offers an intuitive interface with which
to adjust model inputs and observe the changes in outputs
(Fig. 3). The Shiny app does not conduct model runs itself
but rather facilitates the dynamic inspection of previously
calculated results. It permits sensitivity analysis for param-
eter values, adjustment of the cost-effectiveness threshold
and quick identification of strategies of policy interest. The
Shiny app also plots the intermediate outcomes, which can
be useful if the user wishes to interrogate the association
between strategy characteristics and cost-effectiveness.

The Shiny app allows the user to change the background
settings, including analysis type (base-case vs scenario
analysis), effect measurement (QALYs or LYs), results
discounted or not, axis orientation and range. The user can
choose the parameter they wish to vary, the parameter val-
ues (on a three-point scale), a cost-effectiveness threshold
value and a specific screening strategy to observe (defined by
the screening starting age, stop age and interval). The user
can also select the characteristics of a particular strategy of
interest, which is shown in the plot with the red marker. The
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for (ScreenNumber in 1:nrow(ScreenCounts)) {

set.seed (ScreenCounts [ScreenNumber, "ScreenAge"]) # Fixed sample
seed for the same screening age across sScreening programmes

ScreenSnSeed <- runif (SampleSize) # Save random numbers for the
test sensitivity

ScreenSpSeed <- runif (SampleSize) # Save random numbers for the
test specificity

# Define the screen age

ScreenAge <- ScreenCounts|[ScreenNumber, "ScreenAge']
# Retrieve the test sensitivity and specificity
ScreenSn <- Input[paste("TestSensitivity",

ScreenCounts [ScreenNumber, "TestApplied"], sep = ""), CurrentRun]
ScreenSp <- Input[paste('"TestSpecificity",
ScreenCounts [ScreenNumber, "TestApplied"], sep = ""), CurrentRun]

# Determine the status of individuals at the time of screening

Alive <- ScreenedOutcomes|[, "AllCauseDeath"] >= ScreenAge

NotDiagnosed <- ScreenedOutcomes([, "Clinical"] >= ScreenAge

NotDiagnosed[is.na (NotDiagnosed)] <- TRUE # People who never
develop the disease are also not diagnosed

ScreenEligible <- Alive * NotDiagnosed # Only when both conditions

(alive and not diagnosed) are met

# Identify those in the preclinical stage at the screen age

Preclinical <- ScreenedOutcomes|[, '"Preclinical"] <= ScreenAge

Preclinical[is.na(Preclinical)] <- FALSE # People who never
develop the disease are not in the preclinical stage

AllPositives <- which((Preclinical * ScreenEligible) == 1) # Save
patient numbers that can be screened for positive

# Identify the negatives as the complement of the positives from
within the ScreenEligible set

AllNegatives <- which (ScreenEligible == 1) [! (which(ScreenEligible
== 1) %in% AllPositives)]

# Find the true positives by sampling without replacement over all
positives in proportion to the test sensitivity

TruePositives <- AllPositives[ScreenSnSeed[AllPositives] <=
ScreenSn]

# Find the false positives by sampling without replacement over the

negatives in proportion to the test specificity

FalsePositives <- AllNegatives[ScreenSpSeed[AllNegatives] >=
ScreenSp]

# Censor these successfully treated individuals

ScreenedCured <- TruePositives[which (CureSeed[TruePositives] <=
Input["PreClinicalProbability", CurrentRun])]

# Now update the screen-adjusted outcomes

ScreenedOutcomes [TruePositives, "Clinical] <- ScreenAge # Update
the age of entering clinical state

ScreenedOutcomes [ScreenedCured, "AllCauseDeath"] <-
ScreenedOutcomes [ScreenedCured, "OtherCauseDeath"] # Update all-
cause death

}

Box 6 Pseudo-code simulating the screening intervention

A\ Adis
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Fig.3 The screenshot of the interface built in the R Shiny app. The central value within each parameter range corresponds to the base-case sce-

nario in our example. QALY quality-adjusted life-year

intermediate outcomes for the observed strategy are also
displayed, including the screen performance and the disease
history.

3 An Application

To demonstrate the model, we simulate 100,000 individuals
with an illustrative parameter set. Assuming the screening
interval remains fixed throughout the programme and is an
integer in the range of 1-10 years and screening start and
stop ages are between 25 and 100, we identified all possible
screening strategies. In total, 8161 screening strategies were
simulated, including a no-screening strategy and one-off
screening. To illustrate the relationship between parameter
values and cost-effectiveness, the simulations were repeated
over a range of alternative parameter values. Table 1 lists
all the parameter values used in this example. The cost-
effectiveness threshold in the example is €50,000 per QALY.

We employ comparative statics to show the efficiency
frontiers within the cost-effectiveness plane before and after
a change in parameter values. The process of comparative
statics involves comparing the results of the model with a

change in one or more parameters while holding all else
equal. It is instructive to view two sets of results: (1) those
showing the absolute costs and health effects of all strate-
gies, including no screening and (2) those illustrating costs
and health effects relative to the no-screening strategy. We
separately describe our observations for the impact on cost
and effect estimates.

The execution time is 1.9 min for 250 screening strate-
gies, and 1.45 h for a complete simulation of 8161 strategies
on a 3.2 GHz I7-8700 processor with 32 GB RAM.

3.1 Cost-Effectiveness Results

We identified 17 strategies on the efficiency frontier with
a broad range of ICERs including a no-screening strategy
in the base-case scenario (Table 2; Fig. 4). Compared to no
screening, these strategies are more costly and effective. The
most intensive strategies are more effective, but not cost-
effective. The efficiency frontier’s shape reflects diminishing
marginal returns of screening intensification. In this exam-
ple, the optimally cost-effective strategy in the base case is
screening every 6 years from ages 35-77, with an ICER of
€40,602 per QALY.
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Figure 3 shows the Shiny app illustrating an example strat-
egy of 5-yearly screening between ages 50 and 80. The results
are plotted on the cost-effectiveness plane, with the strategies
forming the efficiency frontier joined by the solid black line,
the strategy with the optimal net health benefit shown with the
green marker and the cost-effectiveness threshold shown with
the dashed red line. This strategy features 4781 clinical cases,
1847 cancer deaths and 261 over-diagnosed cases.

3.2 Comparative Statics

Figures 5 and 6 demonstrate the efficiency frontier over a
range of parameter values. Notably, the strategies that com-
prise the frontier differ as parameters change.

(1) Screen cost

Changes in screening costs result in changes in the verti-
cal plane only as these do not influence screening effective-
ness. Lower screening costs makes screening more cost-
effective, reducing the ICERs of all efficient strategies. The
no-screening strategy, which is located at the origin of the
cost-effectiveness plane, is not influenced by changes in the
costs of primary screening or those following triage, so the
start of the frontier remains static across scenarios. Both
relative and absolute cost estimates decrease as screening
cost decreases.

(B) Treatment cost

Treatment cost changes only influence overall costs with-
out any change in effectiveness, so strategies simply move
vertically in the cost-effectiveness plane. ICERs of screening
decrease when the treatment costs decrease for the screen-
detected disease or increase for symptomatic disease.

Changes to the cost of screen-detected disease do not
influence the position of the no-screening strategy. Conse-
quently, the absolute and relative costs of screening fall iden-
tically when the treatment cost for screen-detected disease
falls. Conversely, varying treatment costs for symptomatic
disease influences costs of both screening and no-screening
strategies. While absolute costs increase, they increase the
most for no screening and by increasingly less as screening
gets more effective. Therefore, a decline in the cost of treating
symptomatically detected disease results in a fall of the cost
of the no-screening scenario and the relative costs of screen-
ing rise and the cost-effectiveness of screening deteriorates.

(C) Treatment effectiveness
Changes in treatment effectiveness only result in changes

in the horizontal plane. Changes to the effectiveness of
screen-detected disease do not influence the position of the
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no-screening strategy, so the relative and absolute changes
are identical. Conversely, changes to the effectiveness of
symptomatically detected disease will influence the position
of the no-screening scenario, and the relative and absolute
outcomes differ.

An improvement in treatment effectiveness of screen-
detected disease shifts the outcomes to the right and all
screening strategies become more cost-effective. A reduc-
tion in treatment effectiveness of symptomatically detected
disease shifts the frontier to the left in terms of the absolute
estimates and shifts to the right in terms of estimates relative
to no screening, and all strategies become more cost-effective.

If the effectiveness of early treatment falls to parity with
that of late treatment, then there is no advantage of screening
and no screening becomes the preferred strategy. There is a
minimum difference in effectiveness between early and late-
stage treatment required for screening to ever be beneficial.
This minimal difference is required, in part, to ensure that
the advantages of screening at least outweigh the QoL losses
imposed by screening itself.

(D) Test performance

Changes in test sensitivity or specificity influence screen-
ing effectiveness and costs, resulting in movement in both
the horizontal and vertical plane. Improved test sensitivity
or specificity improves the accuracy of screening results, and
screening then becomes more effective, less costly and more
cost-effective. As the no-screening strategy is not influenced
by changes in test performance, the absolute and relative
outcomes are identical.

(E) Incidence and other-cause mortality

Varying disease incidence and other-cause mortality affect
both cost and effectiveness of screening. Both parameters
influence the cost and effectiveness estimates of the no-
screening strategy, so the absolute and relative outcomes dif-
fer. In terms of absolute results, increased disease incidence
leads to higher absolute costs and lower absolute effects for
all strategies, including no screening. In terms of results rela-
tive to no screening, the converse is observed, as the relative
costs of screening fall and the relative effects increase, mean-
ing cost-effectiveness increases. Lengthening life expectancy
(reducing other-cause mortality) increases both absolute and
relative costs and health effects. In this example, the relative
outcomes indicate the efficiency frontier moves to the right,
indicating screening becomes more cost-effective.

(F) Sojourn time

In absolute terms, a lengthening of preclinical or clini-
cal sojourn time results in increased effectiveness. Absolute



A Simple Open-Source Model of Cancer Screening 517
Table 1 The parameter inputs Parameter R name Base case Low High
Sojourn time: stage 2
Distribution StageType2 3 3
Scale StageScale2 3 9
Shape StageShape2 1
Sojourn time: stage 3
Distribution StageType3 1.0 1.00 1
Scale StageScale3 0.5 0.25 1
Shape StageShape3 1.0 1.00 1
Quality of life
Stage 1 StageUtility1 0.999 0.99 1.00
Stage 2 StageUtility2 0.900 0.70 0.95
Stage 3 StageUtility3 0.500 0.30 0.60
Test sensitivity
Modality 1 TestSensitivity1 0.95 0.600 1
Modality 2 TestSensitivity2 0.50 0.250 1
Modality 3 TestSensitivity3 0.60 0.300 1
Modality 4 TestSensitivity4 0.65 0.325 1
Modality 5 TestSensitivity5 0.70 0.350 1
Test specificity
Modality 1 TestSpecificityl 0.98 0.600 1
Modality 2 TestSpecificity2 0.95 0.475 1
Modality 3 TestSpecificity3 0.93 0.465 1
Modality 4 TestSpecificity4 0.90 0.450 1
Modality 5 TestSpecificity5 0.80 0.400 1
Test disutility
Modality 1 TestDisutility1 0.001 0.0005 0.002
Modality 2 TestDisutility2 0.002 0.0010 0.004
Modality 3 TestDisutility3 0.005 0.0025 0.010
Modality 4 TestDisutility4 0.005 0.0025 0.010
Modality 5 TestDisutility5 0.005 0.0025 0.010
Probability of treatment success
Early treatment PreClinicalProbability 0.85 0.425 1
Late treatment ClinicalProbability 0.40 0.200 1
Other quality-of-life
burden
Triage DisutilityTriage 0.01 0.005 0.02
Treatment DisutilityTrt 0.09 0.045 0.18
Discounting factors
Rate for costs DiscountRateCost 0.05 0.025 0.1
Rate for effects DiscountRateEffect 0.05 0.025 0.1
Base-year DiscountYear 0 0 5
Costs
Screen CostPrimaryScreen 100 50 200
Triage CostFollowUp 1,000 500 2,000
Early treatment CostTrtScreen 10,000 5,000 20,000
Late treatment CostTrtClinical 20,000 10,000 40,000
Annual incidence (ages)
0 Incidence_0 0 0 0
1-5 Incidence_5 0 0 0
6-10 Incidence_10 0 0 0
11-15 Incidence_15 0 0 0
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Table 1 (continued) Parameter R name Base case Low High
16-20 Incidence_20 0 0 0
21-25 Incidence_25 0 0 0
26-30 Incidence_30 0 0 0
31-35 Incidence_35 0.0005 0.0004167 0.00060
36-40 Incidence_40 0.0005 0.0004167 0.00060
41-45 Incidence_45 0.0008 0.0006667 0.00096
46-50 Incidence_50 0.0008 0.0006667 0.00096
51-55 Incidence_55 0.0008 0.0006667 0.00096
56-60 Incidence_60 0.0012 0.0010000 0.00144
61-65 Incidence_65 0.0012 0.0010000 0.00144
66-70 Incidence_70 0.0012 0.0010000 0.00144
71-75 Incidence_75 0.0012 0.0010000 0.00144
76-80 Incidence_80 0.0016 0.0013333 0.00192
81-85 Incidence_85 0.0016 0.0013333 0.00192
86-90 Incidence_90 0.0016 0.0013333 0.00192
91-95 Incidence_95 0.0016 0.0013333 0.00192
96-100 Incidence_100 0.0016 0.0013333 0.00192

Survival®

0 Survival_0 1 1 1
5 Survival_5 0.9942 0.993968 0.994432
10 Survival_10 0.9937 0.993448 0.993952
15 Survival_15 0.9931 0.992824 0.993376
20 Survival_20 0.9919 0.991576 0.992224
25 Survival_25 0.9902 0.989808 0.990592
30 Survival_30 0.9883 0.987832 0.988768
35 Survival_35 0.9858 0.985232 0.986368
40 Survival_40 0.9821 0.981384 0.982816
45 Survival_45 0.9762 0.975248 0.977152
50 Survival_50 0.9665 0.965160 0.967840
55 Survival_55 0.9508 0.948832 0.952768
60 Survival_60 0.9272 0.924288 0.930112
65 Survival_65 0.8906 0.886224 0.894976
70 Survival_70 0.8347 0.828088 0.841312
75 Survival_75 0.7466 0.736464 0.756736
80 Survival_80 0.6127 0.597208 0.628192
85 Survival_85 0.4344 0.411776 0.457024
90 Survival_90 0.2398 0.209392 0.270208
95 Survival_95 0.0892 0.052768 0.125632
100 Survival_100 0 0 0

“The probability of surviving at a particular year of age

costs reduce with an increase in the preclinical sojourn time
but remain unchanged with the clinical sojourn time. In rela-
tive terms, lengthening the preclinical sojourn time has an
ambiguous effect on effectiveness and cost-effectiveness.
Some low-intensity strategies become relatively more effec-
tive, but higher intensity strategies become relatively less
effective. Consequently, the ICERs fall for some strategies
but rise for others. The relative outcomes for lengthening
the clinical sojourn time are unambiguous as effects fall
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and costs remain unchanged, meaning the ICERs rise for all
strategies as screening becomes less cost-effective.

4 Discussion

We provide a simplified screening CEA microsimulation for
teaching and research purposes. As an initial application,
we present an assessment over a large range of strategies
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Table 2 The cost-effectiveness results for the base-case scenario for strategies that lie on the efficiency frontier

Strategy Undiscounted outcomes Discounted outcomes ICER, €/QALY
Label Start age Stop age Interval LYs QALYs Costs (€) LYs QALYs Costs (€)

A No screening 79.801947  79.516654  904.00  19.365480 19.337555 50498 -

B 46 46 0 79.853977  79.541461 990.91 19.367595  19.338478 61.127 11,515
C 46 56 10 79.886550  79.556584 1073.01 19.368548  19.338875 67.361 15,712
D 46 66 10 79.910897  79.567635 1146.67  19.369057 19.339082  70.908 17,162
E 46 70 8 79.930444  79.576316  1230.96  19.369545 19.339270 75.571 24,743
F 45 66 7 79.934988  79.578538  1239.68  19.369834  19.339381 78.626 27,613
G 45 73 7 79.947866  79.583990 1311.88  19.370050  19.339459 80.960 29,814
H 45 70 5 79.967722  79.592732 1418.12  19.370769  19.339725 89.344 31,578
I 38 73 7 79.973945  79.595844  1415.95 19.371485  19.339986 98.124 33,531
J 35 77 7 79.991348  79.603523  1501.67  19.372273  19.340264 108.922 38,883
K 35 77 6 80.005383  79.609435 1596.73  19.372850 19.340463 116.996 40,602
L 35 75 5 80.021411 79.616258 1707.34  19.373513  19.340678 127.768 50,211
M 35 80 5 80.027628 79.618563 1766.25  19.373595 19.340702 129.106 54,420
N 35 83 4 80.053901  79.628843  2021.69  19.374402 19.340910 147.236 87,398
(6] 35 83 3 80.080173  79.637804 2409.42  19.375412 19.341099 177.200 158,385
P 34 82 3 80.085183  79.640079 2436.57  19.375637 19.341132 184.887 233,353
Q 34 85 3 80.087298  79.640566  2485.51 19.375661 19.341135 185.699 282,266

ICER incremental cost-effectiveness ratio, LY life-year, QALY quality-adjusted life-year

6001

400+

Costs (€, per capita)

200+

19.336

19.337

19.338

19.339

Effects (quality-adjusted life-years, per capita)

19.341

Fig.4 The cost-effectiveness plane for the base-case scenario with the efficiency frontier shown in black and efficient strategies marked A to Q
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Fig.5 The cost-effectiveness efficiency frontier as specific input
parameters are varied (absolute results). QALY quality-adjusted life-
year. (i) Solid line represents the higher-value scenario, and dashed
lines are the low-value scenarios; the shape of the markers corre-
spond to the strategies in Fig. 4. (ii) In the scenarios of high treatment

and conduct comparative statics to illustrate the influence
of parameters on cost-effectiveness. Our results illustrate
the relevance of considering both absolute costs and effects
and those relative to no screening. This distinction between
absolute and relative outcomes is useful when seeking to
demonstrate the intuition behind the observed results. Our
analysis conveys the intuition of the relationship between
parameter values and outcomes, informing the process of
model validation.

To our knowledge, this is the first CEA teaching model
published in the specific context of disease screening. While
this model does not necessarily correspond to screening for
any specific disease, the example presented broadly corre-
sponds to screening for cancer. The framework can, never-
theless, also be applied to other interventions such as peri-
odic dental exams, eye exams, and hepatitis screening.

Our framework is accessible and editable by all as the
complete model code and variable inputs are specified and
provided online. Users are able to apply and extend the
model without concerns of copyright infringement. The
full access contributes to research transparency and facili-
tates sharing knowledge of simulation methodology. As
such, our model is intended as a public good, and we hope
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success for symptomatic disease and low for screen-detected disease,
the no-screening strategy becomes the only comparator on the effi-
ciency frontier. (iii) Note that the range of the axes may vary between
plots to better illustrate the shape change across the scenarios of each
parameter sets

its dissemination will benefit the field of CEA in disease
screening.

An important advantage of our model is its simplicity
and speed. Compared to specialised commercial software or
spreadsheet applications such as Microsoft Excel, the non-
proprietorial nature of R permits an accessible, transparent
and adaptable model platform [27, 28]. R is increasingly
adopted as the modelling tool, with the support of a large
range of open-source materials and well-documented pack-
ages and functions [29]. Importantly, models written in R are
now accepted by the National Institute for Health and Care
Excellence (NICE) [30]. Although there are some published
tutorials for modelling in R [16, 17, 28, 31], these models
are not applied to screening and do not employ DES. As
such, our model offers a novel contribution to the growing
R in CEA literature.

As a teaching tool, our model is intended for two groups.
First, it can serve as a teaching tool for the students who
want to understand the principles of economic evaluation
regarding screening interventions. The intuitive interfaces of
Excel and Shiny ensure that students do not need to under-
stand R programming as they are able to explore alternative
screening policies under different scenarios and threshold
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Fig.6 The cost-effectiveness efficiency frontier as specific input
parameters are varied (results relative to no screening). QALY qual-
ity-adjusted life-year. (i) Solid line represents the higher-value sce-
nario, and dashed lines are the low-value scenarios; the shape of the
markers correspond to the strategies in Fig. 4. (ii) In the scenarios of

values without having to operate or modify R code. Our
Shiny app offers a convenient interface for the examina-
tion of changes to parameter values on cost-effectiveness
estimates. Second, our model serves as a resource for those
intending to learn DES programming in R. Our model pro-
vides a starting point for extensions to other implementa-
tions, either methodological or applied.

Our simplified model is suitable for the purpose of dem-
onstrating the relationship between key parameter values and
cost-effectiveness. Its simplified nature makes demonstrating
face validity straightforward. While our simplified model
can help modellers develop their understanding of screen-
ing, any specific modelling application requires independent,
context-specific demonstration of validation. As such, any
extension of our model might require a renewed exercise in
face validity depending on how extensive the changes are.

Our model deliberately employs a high degree of
abstraction to make it accessible and efficient. Although
this simulation only has five stages, it is sufficient to dem-
onstrate the fundamentals of screening cost-effective-
ness. As an abstracted model it is not suitable for solving
applied research questions regarding specific prevention
programmes. Rather, it is intended as offering a basis for

Effects (QALYs gained)

Effects (QALYs gained)

high treatment success for symptomatic disease and low for screen-
detected disease, the no-screening strategy becomes the only com-
parator on the efficiency frontier. (iii) Note that the range of the axes
may vary between plots to better illustrate the shape change across
the scenarios of each parameter sets

addressing methods research questions. Potential applica-
tions include methods demonstrations of alternative forms of
risk stratification, the differences between models of single
and multiple birth cohorts and illustrating the consequences
of omitting screening strategies.

Our model deliberately eliminates some sources of sto-
chastic error by preserving random seeds for chance events
regarding both screening and treatment success. These can
help the model yield consistent results across alternative
screening strategies with smaller sample sizes. Care must
be taken, however, to ensure that the elimination of this sto-
chastic error does not itself cause artefacts in the simulation
estimates, especially with smaller simulation sample sizes.
An alternative approach is to relax the assumptions around
these common random seeds and simply to inflate the simu-
lation size to attenuate the effects of random error, though
this can come at the cost of model run time.

Naturally, our model has limitations. At a minimum, users
must at least be able to install and run R. They will need to
install the Shiny package if they wish to use our Shiny app.
Our deliberate avoidance of packages results in minor imper-
fections in the presentation of overlapping ICERs within
the cost-effectiveness plane. A consequence of the degree

A\ Adis



522

Y.-S.Lin et al.

of abstraction adopted in the model is that its structure and
parameter values are merely notional and do not correspond
directly to any specific disease. For example, a one-off treat-
ment cost in our model cannot illustrate the treatment cost
correlated with the severity of the disease or the length
of hospital stay. The distinction between the treatments
for screen-detected and symptomatically detected diseases
is a simplistic representation of early and late-stage therapy.
The model also does not include palliative care costs and
death-related expenses. Furthermore, although our model
achieves a fast runtime, it will not retain such speeds when
extended to the multiple health states and complex screening
and triage algorithms required in applied analyses. Further
adaptations might require integration with C++. Another
limitation is that this initial demonstration does not explore
parameter uncertainty, although the comparative statics
framework presented can naturally be used as a template for
one-way sensitivity analysis. Adding probabilistic sensitiv-
ity analyses or exploring multivariate impacts is an obvious
future extension.

5 Conclusion

We present a simple microsimulation model of the cost-
effectiveness of screening. Our model is the first open-source
DES CEA model of screening coded in R. It is specifically
intended to overcome the constraints of the models typi-
cally applied in cancer screening, which are both large and
not openly shared. In this initial application we simulated
thousands of screening strategies as an example to illustrate
how the efficiency frontier moves when parameter changes
through a series of comparative statics. This permits a dem-
onstration of face validity and is intended to aid modellers’
understanding of screening cost-effectiveness. We hope our
model will serve as a useful basis for methods research and
as a teaching tool.
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